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In this supplementary information, we detail (1) the structure of our nonce verb stimuli, (2)
the setup of the Generalized Context Model (GCM) and (3) the Minimal Generalization
Learner (MGL), and (4) how these models compare. We illustrate the models using fits
on our baseline data.

We also discuss model selection in analysing our regression data (5), how the two
learning models compare on our baseline data (6), and how they compare on our ESP
post-test data (7).

Sections (2) and (3) also appear in the main text of Rácz et al. (2020), as Appendices
A and B. However, this material is included here so that this Supplement can serve as a
standalone document for readers who are interested in the technical details of our study.
Additional material is reproduced from the main text, revisiting specific regression model
summaries and additional methods we used to investigate contributions from the GCM
and MGL.

This is an Sweave file. The Rnw source file contains the code used to compile the
pdf output file. It also contains additional code sections that help replicate the results.
The file also contains pointers to further detail in the supplementary repository that
accompanies the paper.

1 Regular and irregular verbs in English

Four irregular verb classes were defined for our stimuli, based on the vowel alternation
and affixation processes that apply to the stem:

• DROVE ([aI]/[i] → [oU])

• SANG ([I] → [æ])

• KEPT ([i] → [E]Ct)

• BURNT ([3]/[E]/[I] → [3]/[E]/[I]Ct)

In the baseline experiment, participants are also tested on monosyllabic verbs that do
not change in the irregular past tense (e.g. cut, hit). These forms are strong outliers and
are not reported in the data.

The stimuli for the ESP experiment, 156 nonce verbs across four classes, are shown
in Table 1 in the main text. Our formal criteria are based on the behavior of existing

1



verbs in English and their categorization by Bybee & Slobin (1982), Moder (1992), and
Albright & Hayes (2003). We made some adjustments to their categories. For instance, our
DROVE class is a generalized version of Moder’s class 4, described using the [aI]→ [oU]
alternation but also including weave. (In contrast, Albright & Hayes restrict this class to
the [aI]→ [oU] alternation.) The verb classes could be defined in a number of ways and
still be mostly consistent with the work of Moder, for instance. We have trialed a set of
small changes in defining the verb categories and found that they have no major effect on
our overall results.

2 Implementation of the Generalized Context Model

2.1 Outline

Our implementation of the GCM evaluates the competition between two categories,
regular and irregular, for each nonce verb base form. The framework of Nosofsky (1990)
is adapted to morphophonology by using a segmental similarity calculation based on
natural classes (Frisch et al., 2004). The same treatment of segmental similarity is used in
the implementations of the GCM in Albright & Hayes (2003) and Dawdy-Hesterberg &
Pierrehumbert (2014). We build on Dawdy-Hesterberg & Pierrehumbert (2014) in that
we define our categories based on formal similarity.

The implementation of the GCM is laid out in models/gcm/gcm.html.

2.2 Training data

Participants are presented with a sequence of nonce verb base forms, and have to pick
either a regular or an irregular past tense form for each. The irregular past tense form is
pre-determined by the class for the stem, so that, for a given verb, the participants can
only choose between the regular past tense form and the irregular past tense form we
assigned to the verb. (So, for instance, for splive, a verb in the DROVE class, they can
choose either splived or splove, but not splift or sploven, etc.) For a given class (such as
DROVE verbs), the GCM has a choice between two sets of verb types.

The irregular set consists of verb types in Celex that form their past tense according
to the pattern captured by the class (such as an {[aI],[i]} → [oU] alternation). The regular
set consists of verb types that have base forms that are similar to these irregular forms
but have a regular -ed past tense form as well as miscellaneous regular verbs – those that
do not belong to any of our schemata. We narrow the regular set to monosyllabic forms.
However, all polysyllabic irregular forms that could serve as a point of comparison are
compounds based on monosyllabic forms (an example is overwrite, a compound form
of irregular write. A compound form might be more regular than a simplex form, but
Celex will list both the regular and the irregular variant in both cases. Table 1 shows
the descriptions of the verb classes using regular expressions.

Our starting point for the training set, following Albright & Hayes (2003), is the list
of verbs in the Celex corpus (Baayen et al. 1993, based on Sinclair 1987) with a token
frequency of 10 or above, encompassing 3156 forms. However, similarity requirements
restrict the respective training sets. We use the DISC transcription in which each
contrastive segment of English is represented by a unique character (dr2v equals [draIv]).
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input alternation
class regular expression IPA
DROVE [i2][zvdltnk]$ {i,aI} + {z,v,d,l,t,n,k} ## {i,aI} → oU
SANG I(m|N|Nk)$ {I} + {m,N,Nk} ## I → æ
KEPT i[lpnm]$ {i} + {l,p,n,m} ## i → ECt
BURNT [3EI]nl$ {3,E,I} + {n,l} ## {3,E,I} → {3,E,I}Ct

Table 1: Descriptions of verb classes in the GCM. ‘C’ marks any consonant.

Table 2 shows the number of verbs in Celex that were used as training sets for our
verb classes. The irregular set consists of forms that match the schema and are irregular.
The regular set contains schema matches which are regular, in addition to miscellaneous
regulars. The miscellaneous set consists of monosyllabic verbs that do not belong to any
of the schemata and are regular. These are included in the regular training set of each
verb class.

The model calculates the similarity of a given nonce verb to the regular and the
irregular set. Comparisons to stems in other classes are not calculated, as past tense
markings for these classes were not available to participants in the forced-choice tasks.

verb class irregular set regular set miscellaneous regular verbs
BURNT 6 42 1218
DROVE 14 83 1218
KEPT 12 31 1218
SANG 8 13 1218
count of unique forms 40 169 1218

Table 2: Number of forms in each verb class, GCM training data

2.3 Estimation

To calculate the similarity between two words, we first compute their dissimilarity. This
is achieved using the string-edit (Levenshtein) distance, which is the smallest number of
changes needed to transform one word into the other. Costs range from 0 (the corresponding
segments are identical) to 1 (inserting or deleting an entire segment). Following Albright
& Hayes (2003) and Dawdy-Hesterberg & Pierrehumbert (2014), costs between 0 and 1
are assigned to corresponding segments that are not identical, based on how much the
segments differ.

All parts of the word are weighted equally, because despite evidence that past tense
formation in English is predominantly driven by overlaps in word endings, onsets also play
a role. (cf. the predominance of s(-cont) onsets in irregular verbs forming the past tense
with a vowel change, e.g. stink, sink, etc. – see Bybee & Moder 1983).

The following transformation, originating with Nosofsky (1990), is used to convert
dissimilarity into similarity:

ηij = exp (−dij/s)p
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In the equation above, ηij represents the similarity between form i and form j, while
dij is the dissimilarity between the two forms. s and p are free parameters.

We explored a range of parameter settings and use s = 0.9 and p = 1 which provide
the best model fit on the baseline data. (In contrast, Albright and Hayes use s = 0.4 and
p = 1.)

When p is set to 1, as here, the similarity function is an exponential, rather than a
Gaussian, function of the dissimilarity. The weighting parameter s controls how quickly
the similarity decreases as the difference (or distance) between the forms increases. When
s is small, the behavior of the model will be dominated by the small group of instances that
differ very little from any given novel form. As it becomes larger, instances that differ more
increase their influence on the overall model behavior (Nosofsky, 1990; Nakisa et al., 2001;
Albright & Hayes, 2003; Dawdy-Hesterberg & Pierrehumbert, 2014). Thus, s effectively
controls the size of the set of verbs that will be taken into account in determining the
support for the regular versus the irregular outcome.

The overall similarity SiCJ
of a test form i to a set CJ is calculated by summing the

similarity ηij of each member j of class CJ to the test form i, and dividing by the summed
similarity ηij of each member k of class CK (the class of all stored forms) to the test form
i. This calculation is summarized in the following equation.

SiCJ
=

∑
j∈CJ

ηij∑
k∈CK

ηik

2.4 Output format

The overall score used in our analyses is the regularity score, which is the complement
to the irregularity score and reaches a maximum of 1.0 when the output is certain to
be regular. Unlike Dawdy-Hesterberg & Pierrehumbert (2014), there is no decision rule
on top of the scoring, such that any form that is more likely than not to be regular is
predicted to surface as regular all the time. This specific decision rule is statistically
optimal, and was imposed in Dawdy-Hesterberg & Pierrehumbert (2014) in order to
determine the ceiling performance for a computational model. The present paper, in
contrast, analyzes data aggregated across human participants with differing decision
thresholds. As discussed in Schumacher et al. (2014) and Schumacher & Pierrehumbert
(2017), the input-output relationship in such aggregated data are typically reported to be
nearly probability-matching.

We rescale the regularity score to match the range of participant responses: [0,1]. The
modified score is interpretable as the probability that the outcome will be regular in
aggregated data. It is also appropriate to attribute this type of gradience to people’s initial
expectations about other people’s behavior, on the assumption that people realistically
encode the variability they have encountered.

2.5 Example: splive

The nonce form splive belongs to the DROVE class in our model. The two past forms of
splive in the experiment are regular splived and irregular splove. It is compared to 1301
regular verbs – these are 83 verbs that match the DROVE schema (e.g. side, hive, line)
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and 1218 miscellaneous verbs. It is also compared to 14 irregular verbs (e.g. drive, stride,
smite) in this class. Overall, it is more similar to the regular set: its regularity score is
0.57.

3 Implementation of the Minimal Generalization

Learner

3.1 Outline

The Minimal Generalization Learner is an algorithm for forming input-output rules of
varying generality, which then compete to generate the output.

The Minimal Generalization Learner is implemented here from materials made available
by Albright and Hayes (Albright & Hayes, 2003). These include their Segmental Similarity
Calculator, implementing the natural class based similarity metric due to Frisch et al.
(2004), also used in the GCM implementation. Due to issues with the MGL code, we
had to fit the MGL manually, using the graphical interface, for each separate participant.
The pyautogui library in python was used to automate this, the code is available in the
supplementary repository.

The implementation of the MGL is laid out in models/mgl/mgl.html.

3.2 Training data

For our model fitted on our baseline nonce word stimuli, the MGL is trained on regular
and irregular English verbs with a minimum frequency cutoff of 10 in Celex (Baayen
et al., 1993), encompassing 4160 past/present verb transcriptions.

The MGL builds rules based on all verb forms in Celex with a token frequency of 10
or above. However the structural descriptions of the resulting rules do not cover all these
forms. Table 3 shows the number of unique forms covered by the structural descriptions
of the ‘regular’ and ‘irregular’ rules that are relevant to each class.

The MGL generates multiple possible past tense forms for each nonce verb. We only
consider to be relevant those rules that generate the past tense forms that appear in the
experiment (e.g. splive : splived / splove). There is at most one relevant regular rule and
one relevant irregular rule for one verb, but multiple rules can generate the (ir)regular
forms for each verb class. We return to this in the next section.

Note that the sets of exceptions and related forms of each rule can overlap. As a
consequence, the MGL rules apply to fewer forms than apparent from the table: 401 in
total.

3.3 Estimation

The MGL begins by considering the relationship between each verb and its past tense as
a ‘rule’. For each pair of verbs in the training data, it then attempts to create a more
general rule. It does so by aligning the wordforms and analyzing shared phonetic features.
For example, merging the word-specific rules for ring/rang and for stink/stank yields a
more general rule that expresses the information that they share: [I] → [æ] / [+coronal]

[N]. Each rule inferred in this way is then further generalized on the basis of more
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category rule.type related forms exceptions
BURNT irregular 24 41
DROVE irregular 21 114
KEPT irregular 10 9
SANG irregular 11 77
BURNT regular 38 21
DROVE regular 29 27
KEPT regular 67 41
SANG regular 47 38

Table 3: Number of forms in each verb class, MGL training data

comparisons; for instance, taking note of swim/swam expands the [I] → [æ] rule to specify
that it occurs before all [+nasal] consonants.

The structural description for each rule has a scope, which is the number of verbs
conforming to the description, to which the rule might apply. The number of hits is the
number of such verbs where the rule generates the correct output. In our example, think
and blink fall in the scope of the rule, but they are not hits, because their past tenses
display other patterns (thought and blinked) The raw confidence of the rule is the ratio of
hits to scope:

Raw confidence = hits
scope

The raw confidence is 1.0 if the rule applies to all forms that meet its structural
description. It is less than 1.0 if some forms meeting its structural description have past
tenses other than that predicted by the structural change. Raw confidence values of 0 are
not found, because a rule needs to apply to two or more examples to be posited in the
first place.

The MGL raw confidence metric is adjusted on the basis of user-specified confidence
limits, to generate an adjusted confidence score that takes into account the amount and
distribution of available data. The MGL’s lower limit affects how much confidence is
assigned to rules that have a small number of instances; generalizations that are based
on a smaller number of word types are penalized. The MGL’s upper limit curtails the
application of seemingly general rules which are in fact driven by a more specific rule
(Albright & Hayes, 2002). The MGL is implemented here with its default settings, with
the exception of the algorithm’s confidence limits. We implement the MGL with lower
and upper confidence limits of 55% and 95%, respectively, since these values afford the
best fit to English verb data in Albright & Hayes (2003).

Note that the MGL algorithm automatically groups together verbs on the basis of
shared phonological properties; thus, verbs are most likely to form strong generalizations
with other verbs that share the same onset or rhyme. Attempts to merge diverse wordforms
under a single generalization would be more likely to incur penalties (i.e. exceptions).
This feature of the MGL is important for comparing with the methods of the GCM. Both
algorithms allow for category-specific similarities to play a role in rule formation.
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3.4 Output format

Recall that in both our baseline and ESP experiment the trial task is prompted by a
stem and offers a choice between a regular form and a specific irregular form, presented
orthographically. In order to model this choice, we take the MGL rule for the stem that
outputs the regular form (the relevant regular rule) and the rule that outputs the specific
irregular form (the relevant irregular rule). If several regular / irregular rules generate the
same form, we take the one with the highest adjusted confidence, following Albright &
Hayes (2003). We use these rules to calculate the form’s relative (adjusted) confidence.

Out of 156 test verbs in the ESP post-test, the Celex-trained MGL generates a
relevant regular rule for every verb. It does not generate a relevant irregular rule for 28
verbs. These are all nonce verbs in the KEPT category (see Section 4.1 in the main
text). In this category, irregular forms are derived from the stem through a vowel change
(e.g. greel → grelt). The verbs missing the relevant irregular rule all have bases ending
in <m>, <n>, or <l>. This is because, in our implementation, there is an insufficient
number of verb types in the training set to support these irregular rules. Decreasing the
cutoff criterion for the model leads to the generation of more of the currently ‘missing’
irregular rules, but the overall model fit becomes worse (cf. below). Therefore, we keep
the cutoff criterion and assume that the adjusted confidence of the irregular rule for these
28 verbs is zero.

For all forms, we then take the relative confidence of the regular rule as compared
to the regular and the irregular rule for each verb and take this as the adjusted regular
confidence of the given verb. (If the irregular rule is missing, the value of this adjusted
regular confidence is 1.) This is given by the following equation:

Relative (adjusted) confidence = adjusted confidence of relevant regular rule
adj. conf. reg. rule + adj. conf. relevant irreg. rule

This relative adjusted confidence represents the MGL regularity score for an item, to
be compared against the regularity score from the GCM (see Section 2).

3.5 Example: splive

The two past forms of splive in the experiment are regular splived and irregular splove.
The relevant regular rule that generates the regular past tense is ‘∅ → [d] / {D, S, T, Z, f,
s, v, z} ’. The structural description indicates that this is a suffixation rule that can
apply to forms that end in an anterior fricative (a natural class in our feature system).
The raw confidence of this rule is 0.98. This is because this rule applies to most forms in
its scope (698/712). The adjusted confidence is very similar: 0.968. This is because this
rule applies to a large number of forms overall. The relevant irregular rule that generates
the irregular form is ‘[aI] → [oU] / {D, Z, dZ, d, l, n, r, z} v’. It applies to [aI] in
the nucleus preceded by a voiced anterior consonant and followed by [v]. In Celex,the
rule applies to three forms (drive, strive, dive) and fails to apply to five (arrive, thrive,
contrive, rive, connive). Its raw confidence is 0.375. Its adjusted confidence is slightly
lower (0.366). This is because it applies to a smaller number of forms overall. The relative
(adjusted) confidence of the predicted regularity of splive is 0.98/(0.98 + 0.37) = 0.73. (As
with the GCM predictions – see Section 2.4 of this SI – we rescale the MGL predictions
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for statistical analysis. The respective rescaled value is 0.363.)

4 Further notes on the GCM and the MGL

The training set for the GCM is focused from the start; it is grouped into four verb classes
and based on formal similarity with base forms of existing irregular verbs playing a role
within each class. This, in effect, assumes lexical gangs as a starting point (Alegre &
Gordon, 1999). In contrast, the MGL starts establishing rules across all forms in the
starting dictionary.

As we see, however, the MGL also focuses the training set. The structural descriptions
of the forms only cover a fraction of all verbs in the starting dictionary, organized by
shared groups of segments. While disjunction increases the power of a theory (increasing
the set of acceptable classes), disjunct classes frequently serve as input for phonological
processes (Mielke, 2008). In the MGL, the disjunction emerges despite the lack of an
initial specification: while one rule accounts for the specific behavior of a given form,
multiple rules cover a given class. The number of regular and irregular rules posited by the
MGL for each verb class can be seen in Table 4. Note that the regular rules themselves
overlap: A regular rule that accounts for weep-weeped can also account for burn-burned.
In total, there are 32 irregular rules and 12 regular rules posited by the MGL on the
Celex verbs.

category irregular rule regular rule sum
burnt 4 2 6
drove 13 3 16
kept 5 5 10
sang 10 4 14

Table 4: Number of regular and irregular rules in each verb class, posited by the MGL for
the training data (Note that the regular rules themselves overlap)

Table 5 shows the list of (irregular and regular) rules for one of the classes, the KEPT
class. We choose this class as it provides a good illustration of the estimation process. An
MGL rule describes an A→ B alternation in an XAY environment. Since the KEPT rules
are all suffixing, the following environment (Y ) is empty. For the preceding environment
(X), we give a list of segments that are matched by the structural description if it applies
to four segments or fewer. Otherwise, we give a phonological description. So, for instance,
the first rule turns [il] to [Elt] following any obstruent. Note that in some cases, the MGL
generates multiple rules for the same alternation (such as ip → Ept). As discussed in
Section 3.4, in such instances, we choose the candidate rule with the highest adjusted
confidence in order to calculate the MGL regularity score. (Fricatives and nasal consonants
constitute a natural class in the segmental feature system used by Albright & Hayes 2003.)

Inspection of the table shows that the MGL fails to generate some expected irregular
rules; in the KEPT class, the MGL omits rules for any stems ending in [in] or [im]. Under
the MGL, there is not enough lexical support for irregular rules of these types, and yet
participants do irregularize nonce forms like cheen and kleem in the forced choice task. In
this respect, the variegated similarity of the non-natural GCM class (which can be used
to categorize cheen) allows for a better approximation of participant behavior. Note also
that in some cases, the MGL generates an overly-specific rule; the rule for stems ending
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in [il] applies only after obstruents, whereas participants also irregularize KEPT stems
with a sonorant in the onset (greel/grelt).

alternation preceding environment
il → Elt obstruent
ip → Ept {j, l, r, w}
ip → Ept dorsal consonant
ip → Ept l
ip → Ept any consonant
il → Elt fricative or nasal consonant
∅ → d alveolars
∅ → d {b, m}
∅ → d alveolar fricative or nasal consonant
∅ → d {b, m, p}

Table 5: The unique rules posited for the KEPT class

The rule structure of the MGL likely follows from its parameter settings, which were
tuned to optimize its performance on our fairly irregular-looking nonce word stimuli. It
requires further work to determine the extent to which the MGL fit on individuals would
improve if the MGL parameters were customized for individual participants.

5 Regression modeling procedures

Our regression model selection in this article proceeded as follows. Except where stated
otherwise, we fit logistic mixed-effects regression models, using R’s lme4 package (Bates
et al., 2015). Non-significant predictors are removed from our models, as determined
by a series of comparisons of nested models, using likelihood ratio tests in R’s anova
function. However, our model tables (e.g., Tables 5 and 6 in the main text) include the
Wald significance levels generated by lme4 summaries (* p<0.05; ** p<0.01; *** p<0.001).
We investigate maximal random effects structures, allowing for random intercepts for
participants and stimulus items (verbs), as well as random slopes for all within-unit factors.
We compare nested random effects structures as above, and retain any random slopes and
intercepts which are supported by likelihood ratio tests (Baayen et al., 2008).

In the model in Table 5 in the main text, repeated here as Table 6, we elect to mean
center continuous variables to counteract collinearity that becomes evident when including
the interaction between verb baseline average and lexical typicality. Although some debate
exists regarding the practice of transforming variables (Belsley, 1991; Echambadi & Hess,
2007), centering variables is common practice to remove nonessential ill conditioning,
that is, relationships that inevitably exist between main and product terms (Aiken et al.,
1991; Jaccard & Turrisi, 2003; Jaeger, 2008). We note that if verb baseline mean is not
centered, collinearity is high (VIF=15.79) in this model. A non-centered model also yields
a significant main effect for lexical typicality, with increased post-test regularization in the
random and reversed conditions. However, we elect to take a more conservative approach
by not including a potentially spurious main effect. Note that other than this main
effect difference, models with and without centering yield results that are qualitatively
indistinguishable; all other main effects and interactions are present in either case. The
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term estimate std.error Z score sig
(Intercept) -0.11 0.16 -0.67 n.s.
verb baseline average 8.26 0.69 12.04 ***
co player lexical typicalityrandom 0.04 0.17 0.25 n.s.
co player lexical typicalityreversed 0.04 0.17 0.20 n.s.
participant prereg average 7.13 0.56 12.67 ***
co player regularisation rate-40% -0.46 0.18 -2.47 *
co player regularisation rate+40% 0.55 0.17 3.31 ***
verb baseline average:co player lexical typicalityrandom -2.40 0.93 -2.59 **
verb baseline average:co player lexical typicalityreversed -2.13 0.96 -2.23 *

Table 6: Experimental Data, Post-test Regression Model Summary. Model formula:
post-test regular response verb baseline mean x lexical typicality + participant pretest
mean + regularization shift + (1 + verb.baseline.mean | participant) + (1 | verb)

collinearity for the centered model (Table 5 in the main text) is acceptable, with a
maximum VIF score of 2.9.

Since it is unclear whether the absence of a difference between random and reversed
conditions is due to a lack of data, we refit the model with the verb baseline average
: lexical typicality interaction on the random and reversed conditions only. Then we
calculated the Bayes Factor of the null model (with no interaction) over the full model
(with interaction) using Bayesian Information Criteria calculated by lme4. The result
strongly supports the null model over the full model, indicating that the preference for
the null model is not due to the lack of evidence to reject it.

6 Fits of the two categorization models on the base-

line data

We fit the Celex-GCM and the Celex-MGL on the baseline data to see how well
they predict regularization responses by the baseline participants. The Celex-MGL
outperforms the Celex-GCM, albeit only slightly. Both models contribute independently
to explaining variation in the data.

The concordance indices of the Celex-MGL (0.586) and the Celex-MGL (0.581)
on the baseline data are similar, with some edge retained by the MGL, as in the case
of Albright & Hayes (2003). Our concordance indices are calculated using the somers2
function in R’s Hmisc package (Harrell Jr, 2008).

Since the regularity scores of the GCM and the MGL for the nonce verbs are correlated
(r = 0.478), we use residualization to see whether the two models make separate significant
contributions to explaining variation in the baseline dataset (Section 6.3 in the main text.)

We fit two simple linear regression models; no random effects are explored in these
models, since we are merely predicting algorithmic scores for each item. We rescale and
center GCM and MGL scores for the model fits.

Model 1 predicts the GCM scores from the MGL scores (M1: GCM regular score ∼
MGL regular score). Model 2 predicts the MGL scores from the GCM scores (M2: MGL
regular score ∼ GCM regular score). In two additional models, we then use the residuals
from each model (M1, M2) as an estimate of the variation present in one score that cannot
be attributed to the other. First, we use the residuals of Model 1 in another, mixed-effects
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term estimate std.error Z score sig
(Intercept) -0.53 0.12 -4.22 ***
rescaled CELEX mgl feature distance 1.35 0.09 14.48 ***
rescaled CELEX gcm feature distance residual 1.42 0.13 11.10 ***

Table 7: Model 3: MGL scores and GCM residuals, baseline data

term estimate std.error Z score sig
(Intercept) -1.23 0.16 -7.68 ***
rescaled CELEX gcm feature distance 2.39 0.15 16.06 ***
rescaled CELEX mgl feature distance residual 1.01 0.09 11.15 ***

Table 8: Model 4: GCM scores and MGL residuals, baseline data

logistic regression model along with the MGL scores to predict regular responses in the
baseline task (M3: regular response ∼ MGL score + GCM residual + (1 + MGL score +
GCM residual|participant) + (1 | verb)). We then residualize for the MGL. We use the
residuals of Model 2 along with the GCM scores in a similar logistic regression model
(M4: regular response ∼ GCM score + MGL residual + (1 + GCM score + MGL residual
|participant)).

The model summaries can be seen in Table 7 (M3) and Table 8 (M4). The residuals
remain significant predictors in both models. Note that while this paper reports values fit
to the baseline experiment data, the same pattern of results also holds for models fit to
the pre-test data.

Although residualization is sometimes critiqued when used as a stopgap for collinearity
or sign changes in a regression model (Wurm & Fisicaro, 2014), these concerns do not
apply in the present case. We use residualization as a tool to test whether one metric
contributes beyond what is covered by a different metric of the same attribute, as in
Baayen et al. (2006), and as also acknowledged in Wurm & Fisicaro (2014).

7 Model fits on the post-test data

We fit the Celex-GCM, the Celex-MGL, as well as the Individual-GCM and the
Individual-MGL on the post-test data. Recall that the Celex-based models were trained
on verbs in Celex. The individual-based models were trained for each participant, on
Celex verbs as well as the co-player’s responses in the ESP test. They were tested on
the post-test for each participant, individually.

In the paper, we list four techniques of evaluating model fit. We go through these in
turn.

7.1 Comparing concordance indices

First, we calculated concordance indices for the Celex- and individual-models on the
post-test data of the ESP experiment.

Table 9 summarizes the concordance indices between our data and the various cat-
egorization models. The Celex-MGL outperforms the Celex-GCM on the post-test
data to some extent, much like in the case of our baseline data. The individual-GCM
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considerably improves on the Celex-GCM in terms of explaining the post-test data. The
individual-MGL also improves on the Celex-MGL, but to a lesser extent.

training data method test data C
Celex-GCM real verbs ‘analogy’ verbs in baseline 0.581
Celex-MGL real verbs ‘rules’ verbs in baseline 0.586
Celex-GCM real verbs ‘analogy’ verbs in post-test 0.602
individual-GCM real verbs + verbs seen in ESP ‘analogy’ verbs in post-test 0.681
Celex-MGL real verbs ‘rules’ verbs in post-test 0.61
individual-MGL real verbs + verbs seen in ESP ‘rules’ verbs in post-test 0.625

Table 9: Summary of concordance indices between our data and the categorization models.
The values above the line show the concordance indices for the baseline data, as reported
in Section 6.3 of the main text. The values below the line show the indices for the ESP
post-test data.

The issue here is that a concordance index is not a statistical test, and does not
provide a margin of error. The trends are apparent: the individual-GCM is more of an
improvement than the individual-MGL. But the strength of these trends is less clear.

7.2 Extra information provided by the individual model over
the Celex-model

Second, we considered the amount of extra variation explained by the individual-model
over the Celex-model, for the MGL and the GCM, respectively.

Section 6.4 in the main text explains that we calculate the extra information given by
the individual models by subtracting the Celex model prediction from the individual
model prediction for each item for each participant.

term estimate std.error Z score sig
(Intercept) -2.95 0.29 -10.01 ***
rescaled CELEX gcm feature distance 4.37 0.42 10.28 ***
gcm score diff 2.61 0.47 5.56 ***
participant prereg average 5.29 0.60 8.79 ***

Table 10: Model 5: Celex-GCM and individual score difference, post-test data

term estimate std.error Z score sig
(Intercept) -1.32 0.15 -8.66 ***
rescaled CELEX mgl feature distance 1.94 0.18 11.04 ***
mgl score diff 0.30 0.14 2.18 *
participant prereg average 7.20 0.59 12.19 ***

Table 11: Model 6: Celex-MGL and individual score difference, post-test data

We do this for both the GCM (Model 5: regular response ∼ Celex GCM score +
extra GCM information + participant pre-test mean + (1 + Celex GCM + extra GCM
information|participant) + (1|verb) and the MGL (Model 6: regular response ∼ Celex
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MGL score + extra MGL information + participant pre-test mean + (1 + Celex MGL
+ extra MGL information|participant)+ (1|verb)).

The extra information is a significant predictor of post-test responses in both models.
However, this effect is much more robust for the GCM than for the MGL, as seen in
Table 10 (M5) and Table 11 (M6). The individual-GCM has some success in modeling
post-test behavior when trained with real English verbs and information from the ESP
test, whereas adjustments made to the individual-MGL do not vastly improve predictive
power.

These techniques are indicative of the relative strengths of the individual-MGL and
-GCM respective to their Celex-counterparts and each other. However, they do not
compare them directly.

7.3 Using combined model predictions to explain variation in
participant post-test responses

We used the Celex-GCM, Celex-MGL, individual-GCM, and individual-MGL together
to predict participant post-test responses. The best model, reported in the paper, contains
the Celex-MGL and the individal-GCM. The summary can be seen in Table 12. This is
the model we report in detail in the main text.

term estimate std.error Z score sig
(Intercept) -2.94 0.27 -10.90 ***
rescaled CELEX mgl feature distance 1.60 0.17 9.36 ***
rescaled individual gcm feature distance 2.79 0.38 7.37 ***
participant prereg average 5.44 0.58 9.30 ***

Table 12: Celex-MGL and Individual-GCM predict variation in the post-test

Goodness-of-fit tests show that model fit is significantly worse if we exclude Celex-
MGL (χ2 = 201.86 ***) or individual-GCM (χ2 = 81.82 ***) as predictors. It is not
significantly better if we include individual-MGL (χ2 = 0.09, p = 0.77) or Celex-GCM
(χ2 = 2.03, p = 0.15).

7.4 Visualising model contributions to explaining variation in
post-test responses

Figure 1 shows how baseline and post-test regularization means of words compare for
participant responses, the GCM, and the MGL.

The Figure shows the average baseline regularity (x axis) and the post-test regularity
(y axis) of the verbs in the ESP experiment. The post-test values vary across the dimension
of co-player lexical typicality. Loess smooths show the general trajectory of the effects of
typicality. In the first panel, regularity translates to aggregate participant responses in the
baseline and in the ESP post-test. In the second and third panels, regularity translates
to regularity scores provided by the Celex- and individual-GCM and -MGL. Values are
rescaled for better comparison.

The loess smooths show the general trend in the raw data, which is echoed in the
regression analysis in the main text: the ‘typical’ trend of baseline-post-test difference
is stronger than either the ‘random’ or ‘reversed’ trends. These are not very much
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Figure 1: Baseline and individual regularization weights: participants, GCM, MGL
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different from each other. The differences in participant behaviour across conditions are
gradual. The GCM, while generally overestimating regularity, captures this gradual shift,
since verb behavior is shifted individually in the post-test. The MGL also overestimates
regularization. Since rules affect groups of verbs, rather than individual verbs, the MGL
predicts more clustered variation across conditions. The ‘typical’ trend continues climbing
after a longer plateau. However, the ‘random’ and ‘reversed’ trends trail off, where the
‘reversed’ trend turns negative towards the higher tail of the distribution.
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